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1. Lower Tail Probabilities

Let {X;, t € T} be a real valued Gaussian process indexed
by T" with £ X; = 0.

IP’(sup(Xt —X;) <z ) as r — 0

teT
where ty € T.



Examples:

(a) Csaki, Khoshnevisan and Shi (2000):

Let W (s,t) be the two dimensional Brownian sheet.
Then for > 0 small

lnIP( Sup W(S,t)gx) > —In*(1/x)

0<s,t<1
In*(1
lnIP( sup Wi(s,t) Sx) = — UL .
0<s,t<1 InIn(1/z)

(b) Capture time of Brownian pursuits (Bramson and Grif-
feath (1991)):

Let Wy, W1, - -+, W, be independent standard Brownian
motions. Define

T, = inf {t > 0 max Wi(t) = Wy(t) + 1} .

1<k<n

When is E (7;,) finite?
Note that for any a > 0, by Brownian scaling,

P(7, > t)
= ]P( max sup (Wi(s) — Wy(s)) < 1)

1<k<n o<s<t

= ]P’( max sup (Wi(s) — Wy(s)) < t_1/2).

1<k<n 0<s<1

Thus the problem is really a lower tail probability prob-
lem.



DeBlassie (1987):

P{1, >t} ~ct™ as t— o0.

Bramson and Griffeath (1991): E 73 = oo

Conjecture: E 1y < 00.

Li and Shao (2001): E 75 < oc.



(c) The probability that a random polynomial has no real
root

(Dembo, Poonen, Shao and Zeitouni (2002))
P( Za' <0z eR) =n
0

1=

where n is even, Z; are i.i.d. N(0, 1), and
1
b= —4 lim —1n]P>( sup X, < 0)
T'—o0 0<t<T
where X, is a centered stationary Gaussian process with
26—|t—s\/2

1+ e~ lt—sl

E XX, =



A General Result

Let X = {X;, t € T'} be a real valued Gaussian random
process indexed by 7" with mean zero. Define the L*-metric

d(S,t) - (E |XS — Xt|2>1/27 Sat cT.

For every € > 0 and a subset A of T, let N(A,¢) denote
the minimal number of open balls of radius € for the metric
d that are necessary to cover A. Fort € T and h > 0, let

B(t,h) = {s € T:d(ts) < h)

and define

() = supsup /Ooo(ln N(B(t,h),eh))?de

h>0 teT
For = 1000(1 + Q) , define

Ay = {t €T d(t,ty) <0 'z},
Ay = {t €T : 0" 12 < d(t,ty) < 0"z},

where 0 < k < L, L = 1+|lng(D/z)] and D = sup, d(t, o).
Let

Ni(z) = N(Ay, 0" 22) for k=0,1,---,L
N(z) = 1+ > Nil).



Li and Shao (2003):
e Assume that () < oo and
E (X5 — X3)(Xe — Xy) >0 for s,t €T

Then

P(sup X, — X, < z) > N0
teT

e Forx >0, lets; €T,1=1,....,M be a sequence such
that for every 1

M
> |Corn(X,, — X4y, X, — X)| < 5/4
j=1
and
d(si, 1)) = (B|X,, — X, |H)Y? > /2.

Then
IP’(sup X — Xy, < :z:) < e M/10,

teT



Some Special Cases

o Let {X(t),t € [0,1]?} be a centered Gaussian process
with X (0) = 0 and stationary increments, that is

Vit sel0,1]Y, E(X,—X,)*=o|t—s|]).
If there are 0 < a < 3 < 1 such that
o(h)/h* 1, o(h)/h” ] ()

Then there exist 0 < c¢; < ¢o < 00 depending only on
«, 3 and d such that for 0 < x < 1/2

—C9 1nl < ln]P’( sup X(t) < J(:I:‘)) < —c lnl.
X te[0,1]4 L

In particular, for the fractional Levy's Brownian motion
L.(t) of order o, i.e. L,(0) =0 and

E (La(t) = La(s))* = It — s[|",

|
La(t) < a:) ~—In-.

In IP( sup
x

tel0,1]d

o Let {X(¢),t € [0,1]?} be a centered Gaussian process
with X' (0) = 0 and

‘1

E (X X;) = H 507 (k) + 07 (s:) = o (|t = sil)).



If there are 0 < @ < 3 < 1 such that

o(h)/h* 1, o(h)/h’ |
Then

1
hﬂP’( sup X(t) < Jd(:lj)) ~ —In’—.
te[0,1] L

In particular, for d-dimensional Brownian sheet W (t)
1

ln]P’( sup W (t) < x) ~ —In? =

te[0,1]4

and more generally

lnIP’( sup B,(t) < aj) ~ —In" —

tel0,1]4

e Open question:

be replaced by

Can the assumption ()
cio(h) < o(2h) < ceo(h)

for some ¢y > ¢ > 17



2. Lower Tail Probabilities for Stationary Gaussian Processes

Let {W(t),t > 0} be the Brownian motion and {U (t),t >
0} be the Ornstein-Uhlenbeck process. It is known that
{U(t),t > 0} and {W(e")/e'/2,t > 0} have the same dis-
tribution. Moreover

1@( sup W (t) < :1:) — IP(|W(1)\ < x) ~ (2/7) 2

0<t<1

as r — 0 and

IP( sup U(t) < O) =exp(=T/2+ o(T))

0<t<T

as I’ — oo.

Is there a connection between these two types of lower tail
probabilities ?

Li and Shao (2003):

Let {Y;,t > 0} be an almost surely continuous stationary
Gaussian process with EY; = 0 and EY;? = 1 fort > 0.
Put p(t) = EY,Y;. Assume that p(t) > 0. We have

(i) The limit
1
p(x) == lim —lnIP’( sup Y; < x)

T'—o0 0<t<T

9



exists, left continuous, and

p(x) = supT_llnIP’< sup Y; < x)
T>0 0<t<T

for every v € R
(ii) If p(t) is decreasing and

> e PO — p(t)

= > 0
O G 1 - p(1)

for every 0 < h < oo and 0 < 6 < 1, then p(x) is
continuous.

To state the connection between lower tail probabilities
of a non-stationary Gaussian process and its dual stationary
Gaussian process, let {X;,t¢ > 0} be a Gaussian process
with Xy =0, E X; = 0. Assume that

(A1) EX,X; > 0and E X? =t for a > 0;

(A2) {Y; = X(e")/e*?,t > 0} is a stationary Gaussian pro-
cess;

(A3) {X,,0 <t < 1} and {a“?X,,0 < t < 1} have the
same distribution for each fixed a > 0.

(Ad) p(t) .= EY;Y] is decreasing and condition () holds.
By subadditivity and the Slepian lemma,

1 1
c:= — lim —1nIP>( sup Yggo) :—SupflnIP)< sup Yggo)

T'—oo 0<t<T T>0 0<t<T

10



exists. Next result shows that the constant c is closely re-
lated to the rate of the lower tail probability P(SUpOStSl X <

)
e Li and Shao (2003):

— Under conditions (A1) — A(4), we have
P( sup X; < QZ) _ QZQCQ/Q+O(1)

0<t<1
as r — 0.

— Let B,, be a fractional Brownian motion of order «
(0 < @ < 2) and put

Then
|
¢, = — lim —lnIP’( sup Y, (t) < O)

T'—o0 0<t<T

exists. Moreover, 0 < ¢, < 00 and

IP( sup B, (t) < ZC) — g2alatoll) 35 2 — ()

0<t<1

e Molchan (1999): ¢, =1 — /2

11



Similarly, we have an alternative representation for the
constant b in Example (c).

Let Y(0) = 0 and
Y (t) = V2t /OO W (u)e " du

fort > 0, where W is the Brownian motion. Then EY'(¢) =

0 and )
EY(t)Y(s) = st for s,t > 0.
s+t
Hence {X;} in Example (c) and {Y (e!)/e!/?} have the same
distribution.
Li and Shao (2002):

We have

IP’( sup Y (1) < x) = gb/2+ol)

0<t<1

asxt — 0. Furthermore, 0.5 < b < 1.

12



Open questions:

L. If {X;,t > 0} is a differentiable stationary Gaussian
process with positive correlation, what is the limit

1
lim TlnP( sup th()) ?

T'—o0 0<t<T

2. What is b7

13



3. Capture Time of the Fractional Brownian Motion Pursuit

Let {Bia(t); t > 0}(k = 0,1,2,...,n) be independent
fractional Brownian motions of order o € (0,2). Put
Tp = Tno = I0f {t > 0: 1I£]?§<n Bio(t) = Boalt) + 1} .
When is E (7,) finite?
Note that

P(r, > s) = ]P( max sup (Bpa(t) — Boa(t)) < 1)

1<k<n 0<t<s

= IP’( max sup (Bya(t) — Boalt)) < 3_0‘/2).

1<k<n o<¢<1

Let
Xiolt) = e_tO‘/QBkya(et), k=01---,n
and
1
na = — 1 —1 P( X alt)—Xo.a <)
e = i B sup i (Xealf)=Xoa(t)) <0

e Li and Shao (2003):
IP’( max sup (Bpa(t)—Boa(t)) < x) _ 2 2ma/ato(l)

I<k<n p<t<1
asr — 0

14



o Kesten (1992):

0 < liminfy, /Inn <limsup~y,1/Ilnn < 1/4

n—00 n— 00
Conjecture: limy, o 75/ Inn exists.

e Li and Shao (2002):

1
— < hminfM < hmsupM < 00,
d,, n—oo Inmn n—oo 1NN
where d, = 2 [ (e™ + e — (" — e *)*)dx. In
particular,
e |
lim = —
n—oo Inn
Conjecture:
lim Tne

n—oolnn  d,

15



4. Some Comparison Inequalities

e Li and Shao (2002):

Let n > 3, and let (§;,1 < j <mn)and (n;,1 <j<n)
be standard normal random variables with covariance
matrices R' = (r};) and R’ = (r};), respectively. As-
sume

Z]

ri; =1y >0 forall 1<4,j<n
Then

IP’( ﬁ{m < Uj})
< B((6 <) <2V <)

T — 2arcsin(r}; ui + u?
o X (o) (o)
S, T arcsm(rw) ( +7°Z-j)
for any u; > 0,1 =1,2,--- ,n satisfying
l - z l
(7 — 73T Jwi + (T — szrkﬁ >0 ()

for {=0,1and forall 1 <1i,7,k <n.

Note: Condition (**) is satisfied if u; = u > 0.

16



e Open question: Does the result remain valid without
assuming (**)7

e Shao (2003):

— Let X1, ..., X,, be jointly Gaussian random variables
with mean zero. Then

P( max | X;| < :1:)

1<i<n

> 2_mm(k’"_k)/2P( max | X;| < :I:)P( max | X;| < :I:)

1<i<k k<i<n

— Let B, be the fractional Brownian motion of order «.
Then there exists ¢, > 0 such that

P( sup |Bu(t) <, sup |Ba(t) — Bafa)] <)

0<s<a a<t<b

> caP< sup |Ba(t)] < 37>P< sup |Ba(t) — Bala)| < y)

0<s<a a<t<b
forany 0 <a < b, x> 0and y > 0.

— Assume X = (X1,...,X,,) ~ N(0,X1), and Y =
(Y1,...,Y,) ~ N(0,X2). If 3¥g — 3 is positive

semidefinite, then

YC C R, P(Y € C) > (|4]/|Z2))"*P(X € C).

17
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