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1. Lower Tail Probabilities

Let {Xt, t ∈ T} be a real valued Gaussian process indexed
by T with E Xt = 0.

P
(

sup
t∈T

(Xt −Xt0) ≤ x
)

as x → 0

where t0 ∈ T .
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Examples:

(a) Csaki, Khoshnevisan and Shi (2000):

Let W (s, t) be the two dimensional Brownian sheet.
Then for x > 0 small

ln P
(

sup
0≤s,t≤1

W (s, t) ≤ x
)
� − ln2(1/x)

ln P
(

sup
0≤s,t≤1

W (s, t) ≤ x
)
� − ln2(1/x)

ln ln(1/x)
.

(b) Capture time of Brownian pursuits (Bramson and Grif-
feath (1991)):

Let W0, W1, · · · , Wn be independent standard Brownian
motions. Define

τn = inf

{
t > 0 : max

1≤k≤n
Wk(t) = W0(t) + 1

}
.

When is E (τn) finite?

Note that for any a > 0, by Brownian scaling,

P(τn > t)

= P
(

max
1≤k≤n

sup
0≤s≤t

(Wk(s)−W0(s)) < 1
)

= P
(

max
1≤k≤n

sup
0≤s≤1

(Wk(s)−W0(s)) < t−1/2
)
.

Thus the problem is really a lower tail probability prob-
lem.
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DeBlassie (1987):

P{τn > t} ∼ ct−γn as t →∞.

Bramson and Griffeath (1991): E τ3 = ∞
Conjecture: E τ4 < ∞.

Li and Shao (2001): E τ5 < ∞.
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(c) The probability that a random polynomial has no real
root

(Dembo, Poonen, Shao and Zeitouni (2002))

P
( n∑

i=0

Zix
i < 0 ∀ x ∈ R1

)
= n−b+o(1)

where n is even, Zi are i.i.d. N(0, 1), and

b = −4 lim
T→∞

1

T
ln P

(
sup

0≤t≤T
Xt ≤ 0

)
where Xt is a centered stationary Gaussian process with

E XsXt =
2e−|t−s|/2

1 + e−|t−s|
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A General Result

Let X = {Xt, t ∈ T} be a real valued Gaussian random
process indexed by T with mean zero. Define the L2-metric

d(s, t) = (E |Xs −Xt|2)1/2, s, t ∈ T.

For every ε > 0 and a subset A of T , let N(A, ε) denote
the minimal number of open balls of radius ε for the metric
d that are necessary to cover A. For t ∈ T and h > 0, let

B(t, h) = {s ∈ T : d(t, s) ≤ h}

and define

Q = sup
h>0

sup
t∈T

∫ ∞

0

(ln N(B(t, h), εh))1/2dε

For θ = 1000(1 + Q) , define

A−1 = {t ∈ T : d(t, t0) ≤ θ−1x},
Ak = {t ∈ T : θk−1x < d(t, t0) ≤ θkx},

where 0 ≤ k ≤ L, L = 1+[lnθ(D/x)] and D = supt∈T d(t, t0).
Let

Nk(x) = N(Ak, θk−2x) for k = 0, 1, · · · , L

N(x) = 1 +
∑

0≤k≤L

Nk(x).
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Li and Shao (2003):

• Assume that Q < ∞ and

E ((Xs −Xt0)(Xt −Xt0)) ≥ 0 for s, t ∈ T

Then
P
(

sup
t∈T

Xt −Xt0 ≤ x
)
≥ e−N(x)

• For x > 0, let si ∈ T , i = 1, ...,M be a sequence such
that for every i

M∑
j=1

|Corr(Xsi
−Xt0, Xsj

−Xt0)| ≤ 5/4

and
d(si, t0) = (E |Xsi

−Xt0|
2)1/2 ≥ x/2.

Then
P
(

sup
t∈T

Xt −Xt0 ≤ x
)
≤ e−M/10.
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Some Special Cases

• Let {X(t), t ∈ [0, 1]d} be a centered Gaussian process
with X(0) = 0 and stationary increments, that is

∀ t, s ∈ [0, 1]d, E (Xt −Xs)
2 = σ2(||t− s||).

If there are 0 < α ≤ β < 1 such that

σ(h)/hα ↑, σ(h)/hβ ↓ (∗)
Then there exist 0 < c1 ≤ c2 < ∞ depending only on
α, β and d such that for 0 < x < 1/2

−c2 ln
1

x
≤ ln P

(
sup

t∈[0,1]d
X(t) ≤ σ(x)

)
≤ −c1 ln

1

x
.

In particular, for the fractional Levy’s Brownian motion
Lα(t) of order α, i.e. Lα(0) = 0 and

E (Lα(t)− Lα(s))2 = ||t− s||α,

ln P
(

sup
t∈[0,1]d

Lα(t) ≤ x
)
≈ − ln

1

x
.

• Let {X(t), t ∈ [0, 1]d} be a centered Gaussian process
with X(0) = 0 and

E (XtXs) =

d∏
i=1

1

2
(σ2(ti) + σ2(si)− σ2(|ti − si|)).
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If there are 0 < α ≤ β < 1 such that

σ(h)/hα ↑, σ(h)/hβ ↓

Then

ln P
(

sup
t∈[0,1]d

X(t) ≤ σd(x)
)
≈ − lnd 1

x
.

In particular, for d-dimensional Brownian sheet W (t)

ln P
(

sup
t∈[0,1]d

W (t) ≤ x
)
≈ − lnd 1

x

and more generally

ln P
(

sup
t∈[0,1]d

Bα(t) ≤ x
)
≈ − lnd 1

x

• Open question:

Can the assumption (∗) be replaced by

c1σ(h) ≤ σ(2h) ≤ c2σ(h)

for some c2 ≥ c1 > 1?
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2. Lower Tail Probabilities for Stationary Gaussian Processes

Let {W (t), t ≥ 0} be the Brownian motion and {U(t), t ≥
0} be the Ornstein-Uhlenbeck process. It is known that
{U(t), t ≥ 0} and {W (et)/et/2, t ≥ 0} have the same dis-
tribution. Moreover

P
(

sup
0≤t≤1

W (t) ≤ x
)

= P
(
|W (1)| ≤ x

)
∼ (2/π)1/2x

as x → 0 and

P
(

sup
0≤t≤T

U(t) ≤ 0
)

= exp(−T/2 + o(T ))

as T →∞.

Is there a connection between these two types of lower tail
probabilities ?

Li and Shao (2003):
Let {Yt, t ≥ 0} be an almost surely continuous stationary

Gaussian process with E Yt = 0 and E Y 2
t = 1 for t ≥ 0.

Put ρ(t) = E Y0Yt. Assume that ρ(t) ≥ 0. We have

(i) The limit

p(x) := lim
T→∞

1

T
ln P

(
sup

0≤t≤T
Yt ≤ x

)
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exists, left continuous, and

p(x) = sup
T>0

T−1 ln P
(

sup
0≤t≤T

Yt ≤ x
)

for every x ∈ R1.

(ii) If ρ(t) is decreasing and

a2
h,θ := inf

0<t≤h

ρ(θt)− ρ(t)

1− ρ(t)
> 0

for every 0 < h < ∞ and 0 < θ < 1, then p(x) is
continuous.

To state the connection between lower tail probabilities
of a non-stationary Gaussian process and its dual stationary
Gaussian process, let {Xt, t ≥ 0} be a Gaussian process
with X0 = 0, E Xt = 0. Assume that

(A1) E XsXt ≥ 0 and E X2
t = tα for α > 0;

(A2) {Yt = X(et)/eα/2, t ≥ 0} is a stationary Gaussian pro-
cess;

(A3) {Xat, 0 ≤ t ≤ 1} and {aα/2Xt, 0 ≤ t ≤ 1} have the
same distribution for each fixed a > 0.

(A4) ρ(t) := E YtY0 is decreasing and condition () holds.

By subadditivity and the Slepian lemma,

c := − lim
T→∞

1

T
ln P

(
sup

0≤t≤T
Yt ≤ 0

)
= − sup

T>0

1

T
ln P

(
sup

0≤t≤T
Yt ≤ 0

)
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exists. Next result shows that the constant c is closely re-

lated to the rate of the lower tail probability P
(

sup0≤t≤1 Xt ≤

x
)
.

• Li and Shao (2003):

– Under conditions (A1)− A(4), we have

P ( sup
0≤t≤1

Xt ≤ x) = x2cα/α+o(1)

as x → 0.

– Let Bα be a fractional Brownian motion of order α
(0 < α < 2) and put

Yα(t) :=
Bα(et)

etα/2
.

Then

cα = − lim
T→∞

1

T
ln P

(
sup

0≤t≤T
Yα(t) ≤ 0

)
exists. Moreover, 0 < cα < ∞ and

P
(

sup
0≤t≤1

Bα(t) ≤ x
)

= x2cα/α+o(1) as x → 0

• Molchan (1999): cα = 1− α/2
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Similarly, we have an alternative representation for the
constant b in Example (c).

Let Y (0) = 0 and

Y (t) =
√

2t2
∫ ∞

0

W (u)e−utdu

for t > 0, where W is the Brownian motion. Then E Y (t) =
0 and

E Y (t)Y (s) =
2st

s + t
for s, t > 0.

Hence {Xt} in Example (c) and {Y (et)/et/2} have the same
distribution.
Li and Shao (2002):

We have

P
(

sup
0≤t≤1

Y (t) ≤ x
)

= xb/2+o(1)

as x → 0. Furthermore, 0.5 < b < 1.
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Open questions:

1. If {Xt, t ≥ 0} is a differentiable stationary Gaussian
process with positive correlation, what is the limit

lim
T→∞

1

T
ln P

(
sup

0≤t≤T
Xt ≤ 0

)
?

2. What is b?
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3. Capture Time of the Fractional Brownian Motion Pursuit

Let {Bk,α(t); t ≥ 0}(k = 0, 1, 2, . . . , n) be independent
fractional Brownian motions of order α ∈ (0, 2). Put

τn := τn,α = inf

{
t > 0 : max

1≤k≤n
Bk,α(t) = B0,α(t) + 1

}
.

When is E (τn) finite?
Note that

P(τn > s) = P
(

max
1≤k≤n

sup
0≤t≤s

(Bk,α(t)−B0,α(t)) < 1
)

= P
(

max
1≤k≤n

sup
0≤t≤1

(Bk,α(t)−B0,α(t)) < s−α/2
)
.

Let

Xk,α(t) = e−tα/2Bk,α(et), k = 0, 1, · · · , n

and

γn,α := − lim
T→∞

1

T
ln P

(
sup

0≤t≤T
max

1≤k≤n
(Xk,α(t)−X0,α(t)) ≤ 0

)

• Li and Shao (2003):

P
(

max
1≤k≤n

sup
0≤t≤1

(Bk,α(t)−B0,α(t)) < x
)

= x2γn,α/α+o(1)

as x → 0
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• Kesten (1992):

0 < lim inf
n→∞

γn,1/ ln n ≤ lim sup
n→∞

γn,1/ ln n ≤ 1/4

Conjecture: limn→∞ γn/ ln n exists.

• Li and Shao (2002):

1

dα
≤ lim inf

n→∞

γn,α

ln n
≤ lim sup

n→∞

γn,α

ln n
< ∞,

where dα = 2
∫∞

0 (exα + e−xα − (ex − e−x)α)dx. In
particular,

lim
n→∞

γn

ln n
=

1

4

Conjecture:

lim
n→∞

γn,α

ln n
=

1

dα
.
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4. Some Comparison Inequalities

• Li and Shao (2002):

Let n ≥ 3, and let (ξj, 1 ≤ j ≤ n) and (ηj, 1 ≤ j ≤ n)
be standard normal random variables with covariance
matrices R1 = (r1

ij) and R0 = (r0
ij), respectively. As-

sume
r1
ij ≥ r0

ij ≥ 0 for all 1 ≤ i, j ≤ n

Then

P
( n⋂

j=1

{ηj ≤ uj}
)

≤ P
( n⋂

j=1

{ξj ≤ uj}
)
≤ P

( n⋂
j=1

{ηj ≤ uj}
)

exp
{ ∑

1≤i<j≤n

ln
(π − 2 arcsin(r0

ij)

π − 2 arcsin(r1
ij)

)
exp

(
−

(u2
i + u2

j)

2(1 + r1
ij)

)}
for any ui ≥ 0, i = 1, 2, · · · , n satisfying

(rl
ki − rl

ijr
l
kj)ui + (rl

kj − rl
ijr

l
ki)uj ≥ 0 (∗∗)

for l = 0, 1 and for all 1 ≤ i, j, k ≤ n.

Note: Condition (**) is satisfied if ui = u ≥ 0.
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• Open question: Does the result remain valid without
assuming (**)?

• Shao (2003):

– Let X1, ..., Xn be jointly Gaussian random variables
with mean zero. Then

P
(

max
1≤i≤n

|Xi| ≤ x
)

≥ 2−min(k,n−k)/2P
(

max
1≤i≤k

|Xi| ≤ x
)
P

(
max
k<i≤n

|Xi| ≤ x
)

– Let Bα be the fractional Brownian motion of order α.
Then there exists cα > 0 such that

P
(

sup
0≤s≤a

|Bα(t)| ≤ x, sup
a≤t≤b

|Bα(t)−Bα(a)| ≤ y
)

≥ cαP
(

sup
0≤s≤a

|Bα(t)| ≤ x
)
P

(
sup

a≤t≤b
|Bα(t)−Bα(a)| ≤ y

)
for any 0 < a < b, x > 0 and y > 0.

– Assume X = (X1, ..., Xn)
′ ∼ N(0,Σ1), and Y =

(Y1, ..., Yn)
′ ∼ N(0,Σ2). If Σ2 − Σ1 is positive

semidefinite, then

∀C ⊂ Rn, P (Y ∈ C) ≥ (|Σ1|/|Σ2|)1/2P(X ∈ C).
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