Heat Kernels,

Symplectic Geometry,

Moduli Spaces and Finite Groups

Basic Idea: Heat Kernel as a unifying technique to treat problems of different nature.

We will use the heat kernel of the simplest operator: The Laplacian.

Heat kernel in R^{n} :

$$
\Delta=\sum \frac{\partial^{2}}{\partial x^{i^{2}}},
$$

Fundamental solution of

$$
\left(\frac{\partial}{\partial t}-\Delta\right) H=0
$$

$$
H\left(t, x, x_{0}\right)=\frac{1}{(4 \pi t)^{n / 2}} \exp \left(-\frac{\left|x-x_{0}\right|^{2}}{4 t}\right) .
$$

On general (compact) manifold M,

$$
\begin{gathered}
H\left(t, x, x_{0}\right)= \\
\frac{1}{(4 \pi t)^{n / 2}} \exp \left(-\frac{\left|x-x_{0}\right|^{2}}{4 t}\right)\left\{a_{0}+a_{1} t+\cdots\right\} .
\end{gathered}
$$

Fundamental solution of

$$
\left(\frac{\partial}{\partial t}-\Delta\right) H=0
$$

with Laplacian Δ of given metric.

Localizing property:

$$
H\left(t, x, x_{0}\right) \xrightarrow{t \rightarrow 0} \delta\left(x-x_{0}\right) .
$$

On the other hand:
$H\left(t, x, x_{0}\right)$ also has global expression in terms of eigen-functions.

Special cases: Theta-functions and modular transformation.
(Famous applications: Mckean-Singer: AtiyahSinger, Atiyah-Bott, equivariant localization formulas)

Serge Lang: Heat kernel is everything!?

Simple idea: Consider

$$
f: M \rightarrow N
$$

smooth map between smooth manifolds.

Let $H^{N}\left(t, x, x_{0}\right)$ be the heat kernel on N.

Consider the integral:

$$
I(t)=\int_{M} H^{N}\left(t, f(y), x_{0}\right) d y
$$

dy: a measure on M.

As $t \rightarrow 0$,

$$
I(t) \longrightarrow \int_{N_{\delta}\left(f^{-1}\left(x_{0}\right)\right)} H^{N}\left(t, f(y), x_{0}\right) d y
$$

from localizing property.

Then compute $I(t)$ globally on M or N.

Principle: Local \Leftrightarrow Global.

Heat kernel as a bridge.

Will discuss four applications:
(1) Witten's Nonabelian localization formula in symplectic geometry. (Wu, J-K).
(2) Intersection numbers on moduli space of flat G-bundles on a Riemann surface: Witten's formulas; Verlinde formula (Bismut-L).
(3) Measures of the solution moduli for equations in compact Lie groups: (Diaconis.)
(4) Numbers of solutions of equations in finite groups. (Freed-Q, Serre).

Other applications: (a) study fundamental groups of 3-manifolds; (b) group-valued moment maps; (c) hyper-kahler moment maps.

Warm-up:
(1) M, compact symplectic manifold, K compact Lie group, k its Lie algebra, k^{*} the dual, and $<,>$ the metric induced from Killing form.

Let ω be the symplectic form on M. Assume K acts on M, preserving ω, with

$$
\mu: M \longrightarrow k^{*}
$$

the moment map. For $X \in k$,

$$
d(\mu, X)=i_{X_{M}} \omega,
$$

X_{M} : the induced vector field on M.
(μ, X): pairing on $k^{*} \times k$.

The symplectic quotient

$$
M_{K}=\mu^{-1}(0) / K
$$

($=$ GIT quotient in projective category by $K_{\mathbb{C}}$.)
In this case,

$$
N=k^{*} \simeq \mathbb{R}^{n}
$$

and

$$
H^{N}\left(t, x, x_{0}\right)=\frac{1}{(4 \pi t)^{n / 2}} \exp \left(-\frac{\left|x-x_{0}\right|^{2}}{4 t}\right) .
$$

Consider the integral

$$
I(t)=\int_{M} H(t, \mu(y), 0) e^{\omega}
$$

where symplectic volume

$$
e^{\omega}=\frac{\omega^{m}}{m!}
$$

with $m=\operatorname{dim}_{\mathbb{C}} M$.
(i) Local computation: $t \rightarrow 0$ (Guillemin-S):

$$
I(t)=\int_{M_{K}} e^{\omega_{0}-t<F, F>}+O\left(e^{-\delta^{2} / 4 t}\right)
$$

(Computation in δ-neighborhood of $\mu^{-1}(0)$.
ω_{0} : the induced symplectic form on M_{K},
F : the curvature of $\pi: \mu^{-1}(0) \xrightarrow{K} M_{K}$.
(ii) Global computation: rewrite (Fourier transform),

$$
I(t)=\int_{k} e^{-t<\varphi, \varphi>} \int_{M} e^{\omega+i(\mu, \varphi)} d \varphi
$$

Reduce to the fixed points in M of the maximal torus.

Take $K=S^{1}$ as example. $\omega+i(\mu, \varphi)$ the equivariant symplectic form.

Atiyah-Bott Localization formula

$$
\int_{M} e^{\omega+i(\mu, \varphi)}=\sum_{F} \int_{F} \frac{i_{F}^{*} e^{\omega+i(\mu, \varphi)}}{e_{T}\left(N_{F / M}\right)} .
$$

$\{F\}$: fixed components; i_{F}^{*} : restriction.
$e_{T}\left(N_{F / M}\right)$: the equivariant Euler class of the normal bundle of F in M.

Final formula: Witten's nonabelian localization,

$$
I(t)=\int_{M_{K}} e^{\omega_{0}-t<F, F>}+O\left(e^{\delta^{2} / 4 t}\right)
$$

$$
=\int_{k} e^{-t\langle\varphi, \varphi\rangle} d \varphi \sum_{F} \int_{F} \frac{i_{F}^{*} e^{\omega+i(\mu, \varphi)}}{e_{T}\left(N_{F / M}\right)} .
$$

for $K=S^{1}$, (S. Wu). Or to maximal torus (J-K).

Take limit $t \rightarrow 0$.

Expand in t-polynomial, compare coefficients.
(2) Intersection numbers on moduli space of flat G-bundles on a Riemann surface.

Consider map:

$$
f: \quad G^{2 g} \times O_{c} \rightarrow G
$$

with

$$
f\left(x_{1}, \cdots, y_{g} ; z\right)=\prod_{j=1}^{g}\left[x_{j}, y_{j}\right] z .
$$

General cases are the same.
O_{c} : conjugacy class through (generic) $c \in G$.
G with the bi-invariant metric induced by the Killing form.

Heat kernel on G :

$$
H(t, x, y)=\frac{1}{|G|} \sum_{\lambda \in P_{+}} d_{\lambda} \cdot \chi_{\lambda}\left(x y^{-1}\right) e^{-t p_{c}(\lambda)}
$$

$|G|$: volume of G
P_{+}: all irreducible representations, identified as a lattice in t^{*}, dual of the Lie algebra of the maximal torus $T \subset G$.
χ_{λ} : the character of λ.
d_{λ} : the dimension of λ.
$p_{c}(\lambda)=|\lambda+\rho|^{2}-|\rho|^{2} . \quad \rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha . \quad \Delta^{+}:$ positive roots.

Moduli space

$$
\mathcal{M}_{c}=f^{-1}(e) / G .
$$

G acts on $G^{2 g} \times O_{c}$ by the conjugation γ :

$$
\gamma: G \rightarrow G^{2 g} \times O_{c}
$$

with
$\gamma(w)\left(x_{1}, \cdots, y_{g} ; z\right)=\left(w x_{1} w^{-1}, \cdots, w y_{g} w^{-1} ; w z w^{-1}\right)$.

Consider the integral:

$$
I(t)=\int_{h \in G^{2} g_{\times} \times O_{c}} H(t, f(h), e) d h
$$

$d h$: induced measure on $G^{2 g} \times O_{c}$.
(i) Local computation: $t \rightarrow 0$,

$$
I(t)=\frac{|G|}{|Z(G)|} \int_{\mathcal{M}_{c}} d \nu_{c}+O\left(e^{-\delta^{2} / 4 t}\right)
$$

where $d \nu_{c}$ is the Reidemeister torsion $\tau\left(\mathcal{C}_{c}^{\prime}\right)$ of the complex

$$
\mathcal{C}_{c}^{\prime}: \quad 0 \rightarrow g \xrightarrow{d \gamma} g^{2 g} \oplus T_{c} O_{c} \xrightarrow{d f} g \rightarrow 0
$$

with $g \simeq T_{e} G$. (Forman)

Deformation complex \Longrightarrow

$$
T \mathcal{M}_{c} \simeq H^{1}\left(\mathcal{C}_{c}^{\prime}\right)
$$

Poincare duality (Witten, B-L, Milnor, Johnson) \Longrightarrow

$$
d \nu_{c}=\tau\left(\mathcal{C}_{c}^{\prime}\right)=(2 \pi)^{2 N_{c}}|j(c)| \frac{\omega_{c}^{N_{c}}}{N_{c}!}
$$

with

$$
|j(c)|=\left.\operatorname{det}(I-\operatorname{Ad}(c))\right|^{\frac{1}{2}}
$$

on $T_{c} O_{C}$: Weyl denominator; R-torsion of boundary.
ω_{c} : the natural symplectic structure on \mathcal{M}_{c}, induced from Poincare duality on the Riemann surface.
(ii) Global computation: The character relations:

$$
\int_{G} \chi_{\lambda}\left(w y z y^{-1} z^{-1}\right) d z=\frac{|G|}{d_{\lambda}} \chi_{\lambda}(w y) \chi_{\lambda}\left(y^{-1}\right),
$$

$$
\int_{G} \chi_{\lambda}(w y) \chi_{\lambda}\left(y^{-1}\right) d y=\frac{|G|}{d_{\lambda}} \chi_{\lambda}(w)
$$

and

$$
\int_{O_{c}} h(g) d v_{g}=\frac{|j(c)|^{2}}{\left|Z_{c}\right|} \int_{G} h\left(g c g^{-1}\right) d g
$$

for any continuous function h on O_{c}.
$Z_{c} \simeq t$, Lie algebra of the centralizer of (generic) c.

Summarize:

$$
\begin{gathered}
\int_{\mathcal{M}_{c}} e^{\omega_{c}}=|Z(G)| \frac{|G|^{2 g-1}|j(c)|}{(2 \pi)^{2 N_{c}}\left|Z_{c}\right|} \sum_{\lambda \in P_{+}} \frac{\chi_{\lambda}(c)}{d_{\lambda}^{2 g-1}} e^{-t p_{c}(\lambda)} \\
+O\left(e^{-\delta^{2} / 4 t}\right) .
\end{gathered}
$$

For $u \in Z(G)$ in center, write $c=u \exp C$ near u. $C \in t$.

A little bit of symplectic geometry applied to the fibration:

$$
G / T \rightarrow \mathcal{M}_{c} \xrightarrow{\pi} \mathcal{M}_{u}
$$

(Assume \mathcal{M}_{u} smooth):

$$
\omega_{c}=\pi^{*} \omega_{u}+\nu_{c}
$$

ν_{c} : the symplectic structure on fibers.

Take derivatives with respect to C, and take limit $c \rightarrow u$:

$$
\int_{\mathcal{M}_{u}} p(\sqrt{-1} \Omega) e^{\omega_{u}}=|Z(G)| \frac{|G|^{2 g-2}}{(2 \pi)^{2 N_{u}}} .
$$

$$
\lim _{c \rightarrow u} \lim _{t \rightarrow 0} \sum_{\lambda \in P_{+}} \frac{\chi_{\lambda}(c)}{d_{\lambda}^{2 g-1}} p(\lambda+\rho) e^{-t p_{c}(\lambda)} .
$$

p : any Weyl-invariant polynomial.
$2 \pi \Omega$: curvature form of $f^{-1}(e) \rightarrow \mathcal{M}_{u}$

Derivative + Heat kernel \Longrightarrow symplectic volume:

$$
\operatorname{Vol}\left(\mathcal{M}_{c}\right)=\int_{\mathcal{M}_{c}} e^{\omega_{c}}
$$

is a polynomial in C of degree at most $2 g\left|\Delta^{+}\right|$ (piecewise):

If $\operatorname{deg} p \geq 2 g\left|\Delta^{+}\right|$,

$$
\int_{\mathcal{M}_{u}} p(\sqrt{-1} \Omega) e^{\omega_{u}}=0
$$

(Newstead conjecture for $G=S U(2)$, AtiyahBott, Donaldson, Kirwan, Zagier. Witten vanishing for $S U(n)$. Gieseker's vanishing for Chern classes.)

Remarks: The integrals

$$
\int_{\mathcal{M}_{u}} p(\sqrt{-1} \Omega) e^{\omega_{u}}
$$

contains all the information for Verlinde formula, since

$$
\left.\operatorname{dim} H^{0}\left(\mathcal{M}_{u}, L^{k}\right)=\int_{\mathcal{M}_{u}} \hat{A} \sqrt{-1} \Omega\right) e^{N_{k} \omega_{u}}
$$

with $c_{1}(L)=\omega_{u}, k \gg 0$. (AS index formula).

Bismut-Labourie: Rewrite infinite sum as " finite sum": residues.

Derivatives of Volume + residues \Longrightarrow Verlinde.
($G=S U(n)$ Szenes' residues; general G, orbifold singularities. More punctures.)

Products of Lie groups + Heat Kernel \Longrightarrow geometry of moduli spaces!

In general, one may consider

$$
I(t)=\int_{G^{2 g} \times O_{c}} F(h) H(t, f(h), e) d h
$$

for G-invariant function $F(h)$.

$$
I(t) \Longrightarrow \int_{\mathcal{M}_{c}} \bar{F}(h) e^{\omega_{c}}
$$

Heat kernel method $=$ finite dimensional anaIogue of Witten's path integral approach:
$G^{2 g} \leftrightarrow \mathcal{A}$, the connection space.
(3) Motivated by a conjecture of Diaconis.

Consider the induced measure on the solution space of

$$
f_{j}\left(x_{1}, \cdots, x_{m}\right)=c_{j} \in G, j=1,2, \cdots, n
$$

in compact Lie group G^{m}.

This gives a map

$$
f=\left(f_{1}, \cdots f_{n}\right): G^{m} \longrightarrow G^{n} .
$$

The heat kernel integral

$$
I(t)=\int_{G^{n}} \prod_{j=1}^{n} H\left(t, f_{j}(h), c_{j}\right) d h
$$

gives the answer immediately.

Example: $\left\{H_{j}\right\}$ subgroups of G. Consider the equation

$$
\prod_{j=1}^{n} x_{j} u_{j} x_{j}^{-1}=x
$$

in $G^{n} \times \Pi_{j} H_{j}$.

Consider map:

$$
f: \quad G^{n} \times \prod_{j=1}^{n} H_{j} \rightarrow G
$$

$$
f\left(x_{1}, \cdots, x_{n} ; u_{1}, \cdots, u_{n}\right)=\prod_{j} x_{j} u_{j} x_{j}^{-1}
$$

Consider the integral

$$
\begin{gathered}
I(t)=\int_{h \in G^{n} \times \prod_{j} H_{j}} H(t, f(h), x) d h \\
=\int_{G} H(t, y, x) F(y) d y
\end{gathered}
$$

Local + global computations:
$f_{*} d h(x)=|G|^{n-1} \sum_{\lambda \in P_{+}} \frac{\prod_{j} \int_{H_{j}} \chi_{\lambda}\left(u_{j}\right) d u_{j}}{d_{\lambda}^{n-2}} \chi_{\lambda}\left(x^{-1}\right) d x$.
$d h$: biinvariant measure on $G^{n} \times \prod_{j=1}^{n} H_{j}$, $d x$: biinvariant measure on G.

Example: Find the measure for the solution space: n-commutator equation,

$$
\left[x_{1},\left[x_{2},\left[\cdots, x_{n}\right]\right]\right]=x
$$

in G^{n}. (Induction formula).

More
(4) Count solutions in finite groups.
G finite group, its heat kernel is

$$
H(t, x, y)=\frac{1}{|G|} \sum_{\lambda \in P_{+}} d_{\lambda} \cdot \chi_{\lambda}\left(x y^{-1}\right) e^{-t p_{c}(\lambda)}
$$

$|G|$: number of elements in G,
P_{+}: all irreducible representations,
$p_{c}(\lambda)$: a function on P_{+}.
Same method for compact Lie groups works well: Replace integrals by sums over G.

Example: Solve equation

$$
\prod_{j=1}^{n}\left[x_{j}, y_{j}\right] \prod_{j=1}^{n} z_{j}=e
$$

in $G^{2 g} \times \prod_{j} O_{c_{j}}$, with $O_{c_{j}}$ conjugacy class of $c_{j} \in G$.

Consider map

$$
f\left(x_{1}, y_{1}, \cdots, x_{g}, y_{g} ; z_{1}, \cdots, z_{n}\right)=\prod_{j=1}^{n}\left[x_{j}, y_{j}\right] \prod_{j=1}^{n} z_{j},
$$

and integral (sum):

$$
I(t)=\int_{G^{2 g} \times \prod_{j} O_{c_{j}}} H(t, f(h), e) d h .
$$

Local + global computations give the number of solutions:

$$
S_{g, n}=\frac{|G|^{2 g+n-1}}{\prod_{j=1}^{n}\left|Z_{c_{j}}\right|} \sum_{\lambda \in P_{+}} \frac{\prod_{j=1}^{n} \chi_{\lambda}\left(c_{j}\right)}{d_{\lambda}^{2 g+n-2}}
$$

$Z_{c_{j}}$ the centralizer of c_{j}. Character formulas used.
$S_{g, n}$ integer(?): $\chi_{\lambda}\left(c_{j}\right)$ is algebraic integer.
$S_{g, n}$ known: Freed-Quinn, $n=0$; Serre.

Strunkov: $S_{g, n} \Longrightarrow$ Brauer p-block conjecture.
Examples: Formulas for numbers:
(a) In $G^{n}:\left[x_{1},\left[x_{2}, \cdots, x_{n-1}\right], x_{n}\right]=e$
(b) In $G^{n} \times \prod_{j=1}^{n} H_{j}: \prod_{j} x_{j} u_{j} x_{j}^{-1}=e$.
(5) For a two or three manifold M with a G bundle P on it, simplicial decompositions always induce certain equations in G :

Presentations of $\pi_{1}(M) \Longrightarrow$ Equations in G.

(6) Group-valued moment maps: $\mu: M \rightarrow G$. Hyper-Kahler moment maps....

