示性形式与几何不变量

陈省身
James Simons

介绍

我们的这项工作，最早发表在 [4] 中，是出于推导四维流形的第一 Pontrjagin 数的一个完全组合公式的尝试。我们希望通过这些形式地与相对于某个黎曼度量 在逐个单纯形上依次积分，并且每个在内部的积分用边界上的积分来代替，能够计算这些边界积分，相对三角剖分求和，把几何信息抹去，最后剩下我们所 寻找的组合公式。这个过程由于出现一个无法用简单组合分析的边界项而被迫终 止。这个边界项就其自身来说也是很有趣的，这篇文章的目的就是研究它和它的 推广。

Weil 同态是一个从李群 \(G \) 的李代数的不变多项式环到 \(G \) 主丛的底空间的示性 上同调环的映射，参看 [5] [7]。这个映射是通过计算丛上的联络 \(\theta \) 的曲率形式 \(\Omega \) 上的 \(l \) 次不变多项式 \(P \)，从而得到底空间上的一个闭形式 \(P(\Omega^l) \)。因为主丛在自身的 提升是平凡的，这些形式 \(P(\Omega^l) \) 在丛里是恰当的。更进一步，通过只相差一个恰 当余数的典则的办法，我们可以构造丛上的形式 \(TP(\theta) \)，使得 \(dTP(\theta) = P(\Omega^l) \)。在某些情况下，例如 \(P(\Omega^l) \) 的维数大于底空间的维数， \(P(\Omega^l) = 0 \) 且 \(TP(\theta) \) 定义了一个丛的实上同调类，我们这里的目标是要给出这些类的一些几何意义。

在 §2 中，我们回顾联络理论中的标准结果。在 §3 中，我们构造形式 \(TP(\theta) \) 并且推导一些基本的性质，特别的，我们证明如果 \(\deg P = n \) 且底流形的维数等于 \(2n - 1 \) ，那么形式 \(TP(\theta) \) 可以得出全空间的实上同调类，当 \(P(\Omega^l) \) 是万有整型类时，可以得到 \(R/Q \) 示性数。上面的类和数都依赖于联络。

在 §4 中，我们考虑流形的主切丛，证明如果 \(\theta', \theta', \Omega, \Omega' \) 是共形相关的黎曼流 形的联络和曲率形式，那么 \(P(\Omega') = P(\Omega^l) \)。此外，如果 \(P(\Omega^l) = 0 \)，那么 \(TP(\theta) \) 和 \(TP(\theta') \) 决定相同的上同调类，故而也就定义了 \(M \) 的共形不变量。在 §5 中，我们研究一个 \(n \) 维流形到 \(R^{2n+k} \) 的共形浸入问题。我们证明存在这样一个浸入的必要 条件是当 \(i > [k/2] \) 时，形式 \(P_i (\Omega^2) = 0 \)，并且 \([(1/2) TP(\theta)] \) 代表主丛中的整型 类。这里 \(P_i \) 是第 \(i \) 个 Pontrjagin 多项式的逆。在 §6 中，我们把这些结果应用到 3 维流形。

在第二位作者与 J. Cheeger 随后的文章 [3] 中，将证明形式 \(TP(\theta) \) 可以在底流 形上以“微分根” 的形式存在。这些是从光滑奇异闭链组成的群到 \(R/Z \) 的同态， 并且要求当限制到边界上时，它们是一个整数周期的微分形式在以这个边界为边 界的链上的积分值的模 \(Z \) 化。这些根组成一个分次环，这个环结构可以进一步 用来进行几何上感兴趣的向量丛的计算。

参考文献

沉痛悼念伟大的数学家，浙江大学数学科学中心名誉主任陈省身先生

http://www.cms.zju.edu.cn/frontindex.asp