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1. INTRODUCTION

The study of moduli space and Teichmiiller space has a long history. These two spaces lie in
the intersections of the researches in many areas of mathematics and physics. Many deep results
have been obtained in history by many famous mathematicians. Here we will only mention a
few that are closely related to our discussions.

Riemann was the first who considered the space M of all complex structures on an orientable
surface modulo the action of orientation preserving diffeomorphisms. He derived the dimension
of this space

dimgr M =69 — 6

where g > 2 is the genus of the topological surface.

In 1940’s, Teichmiiller considered a cover of M by taking the quotient of all complex structures
by those orientation preserving diffeomorphims which are isotopic to the identity map. The
Teichmiiller space 7, is a contractible set in C3973, Furthermore, it is a pseudoconvex domain.
Teichmiiller also introduced the Teichmiiller metric by first taking the L' norm on the cotangent
space of 7, and then taking the dual norm on the tangent space. This is a Finsler metric. Two
other interesting Finsler metrics are the Carathéodory metric and the Kobayashi metric. These
Finsler metrics have been powerful tools to study the hyperbolic property of the moduli and the
Teichmiiller spaces and the mapping class groups. For example in 1970’s Royden proved that
the Teichmiiller metric and the Kobayashi metric are the same, and as a corollary he proved the
famous result that the holomorphic automorphism group of the Teichmiiller space is exactly the
mapping class group.
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Based on the Petersson pairing on the spaces of automorphic forms, Weil introduced the first
Hermitian metric on the Teichmiiller space, the Weil-Petersson metric. It was shown by Ahlfors
that the Weil-Petersson metric is Kéhler and its holomorphic sectional curvature is negative.
The works of Ahlfors and Bers on the solutions of Beltrami equation put a solid fundation of the
theory of Teichmiiller space and moduli space [1]. Wolpert studied in details the Weil-Petersson
metric including the precise upper bound of its Ricci and holomorphic sectional curvature. From
these one can derive interesting applications in algebraic geometry. For example, see [9] .

Moduli spaces of Riemann surfaces have also been studied in details in algebraic geometry
since 1960. The major tool is the geometric invariant theory developed by Mumford. In 1970’s,
Deligne and Mumford studied the projective property of the moduli space and they showed that
the moduli space is quasi-projective and can be compactified naturally by adding in the stable
nodal surfaces [3]. Fundamental works have been done by Gieseker, Harris and many other
algebraic geometers.

The work of Cheng-Yau [2] in the early 80s showed that there is a unique complete Kéhler-
Einstein metric on the Teichmiiller space and is invariant under the moduli group action. Thus
it descends to the moduli space. As it is well-known, the existence of the Kéhler-Einstein metric
gives deep algebraic geometric results, so it is natural to understand its properties like the
curvature and the behaviors near the compactification divisor. In the early 80s, Yau conjectured
that the Kahler-Einstein metric is equivalent to the Teichmiiller metric and the Bergman metric
2], [24], [14].

In 2000, McMullen introduced a new metric, the McMullen metric by perturbing the Weil-
Petersson metric to get a complete Kahler metric which is complete and Kéahler hyperbolic.
Thus the lowest eigenvalue of the Laplace operator is positive and the L?-cohomology is trivial
except for the middle dimension [13].

The moduli space appears in many subjects of mathematics, from geometry, topology, al-
gebraic geometry to number theory. For example, Faltings’ proof of the Mordell conjecture
depends heavily on the moduli space which can be defined over the integer ring. Moduli space
also appears in many areas of theoretical physics. In string theory, many computations of path
integrals are reduced to integrals of Chern classes on the moduli space. Based on conjectural
physical theories, physicists have made several amazing conjectures about generating series of
Hodge integrals for all genera and all marked points on the moduli spaces. The proofs of these
conjectures supply strong evidences to their theories.

Our goal of this project is to understand the geometry of the moduli spaces. More precisely,
we want to understand the relationships among all of the known canonical complete metrics
introduced in history on the moduli and the Teichmiiller spaces, and more importantly to in-
troduce new complete Kéhler metrics with good curvature properties: the Ricci metric and the
perturbed Ricci metric. Through a detailed study we proved that these new metrics have very
good curvature properties and very nice Poincaré-type asymptotic behaviors [10], [11]. In par-
ticular we proved that the perturbed Ricci metric has bounded negative Ricci and holomorphic
sectional curvature and has bounded geometry. To the knowledge of the authors this is the first
known such metric on moduli space and the Teichmiiller spaces with such good properties. We
know that the Weil-Petersson metric has negative Ricci and holomorphic sectional curvature,
but it is incomplete and its curvatures are not bounded from below. Also note that one has no
control on the signs of the curvatures of the other complete Kéhler metrics mentioned above.

We have obtained a series of results. In [10] and [11] we have proved that all of these known
complete metrics are actually equivalent, as consequences we proved two old conjectures of Yau
about the equivalence between the Kahler-Einstein metric and the Teichmiiller metric and also
its equivalence with the Bergman metric. In both [24] and [14] which were both written in early
80s, Yau raised various questions about the Kéahler-Einstein metric on the Teichmiiller space.
By using the curvature properties of these new metrics, we obtained good understanding of the
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Kahler-Einstein metric such as its boundary behavior and the strongly bounded geometry. As
one consequence we proved the stability of the logarithmic extension of the cotangent bundle of
the moduli space [11]. Note that the major parts of our papers were to understand the Kéhler-
Einstein metrics and the two new metrics. One of our goal is to find a good metric with the best
possible curvature property. The perturbed Ricci metric is close to be such metric. We hope
to understand its Riemannian curvature in the future. The most difficult part of our results
is the study of the curvature properties and the asymptotic behaviors of the new metrics near
the boundary, only from which we can derive geometric applications such as the stability of the
logarithmic cotangent bundle. The comparisons of those classical metrics as well as the two new
metrics are quite easy and actually simple corollaries of the study and the basic definitions of
those metrics.

Our first paper was post in the webpage since February 2004 and widely circulated. Since
then the first and the second author have given several lectures about the main results and key
ideas of both of our papers. In July we learned from the announcement of S.-K. Yeung in Hong
Kong University ! where he announced he could prove a small and easy part of our results about
the equivalences of some of these metrics by using a bounded pluri-subharmonic function. 2

The purpose of this note is to give a brief overview of our results and their background. It
is based on the lecture delivered by the first author in the First International Conference of
Several Complex Variables held in the Capital Normal University in August 23-28, 2004. All of
the main results mentioned here are contained in [10] and [11] which the interested reader may
read for details. They have been circulated for a while. The first author would like to thank the
organizers for their invitation and hospitality.

2. THE TOPOLOGICAL ASPECTS OF THE MODULI SPACE

The topology of the Teichmiiller space is trivial, since it is topologically a ball. But how
to compactify it in a natural and useful way is still an interesting problem. Penner has done
important works on this problem. The compactification of Teichmiiller space is useful in three
dimensional topology. The topology of the moduli space and its compactification is highly
nontrivial and have been well-studied for the past years from many point of views. Here we only
mention the recently proved Mumford conjecture about the stable cohomology of the moduli
spaces; the Witten conjecture about the KdV equations for the generating series of the integrals
of the v classes; the Marino-Vafa conjecture about the closed expressions for the generating
series of triple Hodge integrals.

The first two results mentioned above are already well-known. Here we would like to explain
a little more details about the Marino-Vafa conjecture proved in [8] which gives a closed formula
for the generating series of triple Hodge integrals of all genera and all possible marked points,
in terms of Chern-Simons knot invariants.

Hodge integrals are defined as the intersection numbers of A classes and v classes on the

Deligne-Mumford moduli spaces of stable Riemann surfaces M, j, the moduli with h marked

points. Recall that a point in ﬂg,h consists of (C, z1,...,x), a (nodal) Riemann surface C' and
h smooth points on C. o
The Hodge bundle E is a rank g vector bundle over M, j, whose fiber over [(C,x1,...,zp)] is

HY(C,wc). The X classes are the Chern Classes:
A = CZ(E) S HQi(Mgﬁ; Q)

1http://hkuma‘ch.hku4hk/Nimlr/record50304/GEO-YeungSK.pdf
ZWe received a hard copy of Yeung’s paper in November 2004 where he used a similar method to ours in [11]
to compare the Bergman, the Kobayashi and the Carathéodory metric. It should be interesting to see how one
can use the bounded psh function to derive these equivalences.
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On the other hand the cotangent line T, C' of C at the i-th marked point x; gives a line bundle
IL; over ﬂg,h. The 1 classes are also Chern classes:

vi = c1(Li) € H? (Mg Q).
Let us define
A (u) = ud — Mud™h 4 (1)9),.
The Marino-Vafa conjecture states that the generating series of the triple Hodge integrals
/ A;/(l)A;/(T)A;/(—T -1)
— h
Mg, [Tizi (1 = pans)
for all g and all h can be expressed by close formulas of finite expression in terms of the rep-
resentations of symmetric groups, or the Chern-Simons knot invariants. Here 7 is a parameter
and pu; are some integers. Many interesting Hodge integral identities can be easily derived from
this formula.
The Marifio-Vafa conjecture originated from the large N duality between the Chern-Simons

and string theory. It was proved by exploring differential equations from both geometry and
combinatorics. The interested reader may read [8] for more details.

I

3. THE BACKGROUND OF THE TEICHMULLER THEORY

In this section, we recall some basic facts in Teichmiiller theory and introduce various notations
for the following discussions. Please see [4] and [18] for more details.

Let ¥ be an orientable surface with genus g > 2. A complex structure on X is a covering of X
by charts such that the transition functions are holomorphic. By the uniformization theorem, if
we put a complex structure on ¥, then it can be viewed as a quotient of the hyperbolic plane H?
by a Fuchsian group. Thus there is a unique Kahler-Einstein metric, or the hyperbolic metric
on .

Let C be the set of all complex structures on X. Let Diff*(X) be the group of orientation
preserving diffeomorphisms and let Di f fJ () be the subgroup of Dif fT(3) consisting of those
elements which are isotopic to identity.

The groups Diff*(X) and Dif f;7(X) act naturally on the space C by pull-back. The Te-
ichmiiller space is a quotient of the space C

T, = C/Dif f§ ().

From the famous Bers embedding theorem, now we know that 7, can be embedded into C39—3
as a pseudoconvex domain and is contractible. Let

Mod, = Dif fH(2)/Dif fi (%)

be the group of isotopic classes of diffeomorphisms. This group is called the (Teichmiiller) moduli
group or the mapping class group. Its representations are of great interests in topology and in
quantum field theory.

The moduli space M, is the space of distinct complex structures on 3 and is defined to be

My =C/Dif fH (%) = T,/Mod,.

The moduli space is a complex orbifold.
For any point s € Mg, let X = X be a representative of the corresponding class of Riemann
surfaces. By the Kodaira-Spencer deformation theory and the Hodge theory, we have

TxM, = H (X, Tx) = HB(X)
where HB(X) is the space of harmonic Beltrami differentials on X.
Ty Mgy = Q(X)
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where (X)) is the space of holomorphic quadratic differentials on X.
Pick p € HB(X) and ¢ € Q(X). If we fix a holomorphic local coordinate z on X, we can
write p = u(z)% ® dz and ¢ = ¢(z)dz%. Thus the duality between Tx M, and T% M, is

sl = [ otz
By the Riemann-Roch theorem, we have
dim¢ HB(X) = dimc Q(X) =39 — 3

which implies
dim(c 'Z;] = dim@ ./\/lg = 3g - 3.

4. METRICS ON THE TEICHMULLER SPACE AND THE MODULI SPACE

There are many very famous classical metrics on the Teichmiiller and the moduli spaces and
they have been studied independently by many famous mathematicians. Each metric has played
important role in the study of the geometry and topology of the moduli and Teichmiiller spaces.

There are three Finsler metrics: the Teichmiiller metric || - |7, the Kobayashi metric || - || x
and the Carathéodory metric || - ||¢. They are all complete metrics on the Teichmiiller space
and are invariant under the moduli group action. Thus they descend down to the moduli space
as complete Finsler metrics.

There are seven Kahler metrics: the Weil-Petersson metric w,,, which is incomplete, the
Cheng-Yau’s Kahler-Einstein metric w,.,, the McMullen metric w,,, the Bergman metric w,,
the asymptotic Poincaré metric on the moduli space w,, the Ricci metric w; and the perturbed
Ricci metric ws. The last six metrics are complete. The last two metrics are new metrics studied
in details in [10] and [11].

Now let us give the precise definitions of these metrics and state their basic properties.

The Teichmiiller metric was first introduced by Teichmiiller as the L' norm in the cotangent
space. For each ¢ = p(2)dz? € Q(X) & T% My, the Teichmiiller norm of ¢ is

Il = [ le(e)] dadz.
X
By using the duality, for each p € HB(X) = Tx M,,
[l = sup{Re[u; ¢] | [[ollr = 1}

Please see [4] for details. It is known that Teichmiiller metric has constant holomorphic sectional
curvature —1.

The Kobayashi and the Carathéodory metrics can be defined for any complex space in the
following way: Let Y be a complex manifold and of dimension n. let Agr be the disk in C with
radius R. Let A = Ay and let p be the Poincaré metric on A. Let p € Y be a point and let
v € T,Y be a holomorphic tangent vector. Let Hol(Y,Agr) and Hol(Ag,Y) be the spaces of
holomorphic maps from Y to Agr and from Ag to Y respectively. The Carathéodory norm of
the vector v is defined to be

lollc=sup |[fivlla,

€Hol(Y,A
and the Kobayashi norm of v is defined to be

2

vl g = inf —.
H HK fEHOI(AR,Y), f(0)=p, f(0)=v R

The Bergman (pseudo) metric can also be defined for any complex space Y provided the
Bergman kernel is positive. Let Ky be the canonical bundle of Y and let W be the space of L?
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holomorphic sections of Ky in the sense that if o € W, then
ol = | (V=170 o <o,
The inner product on W is defined to be
@) = [ (VD an

for all o,p € W. Let 01,09, -+ be an orthonormal basis of W. The Bergman kernel form is the
non-negative (n,n)-form
o0
By = Z(\/ —1)"20j NTj.
j=1

With a choice of local coordinates z;, - - - , z,, we have
By = BEy(z,2)(V=1)"dzy A+ Adzp AdZ1 A -+ A dZp,

where BEy (z,%) is called the Bergman kernel function. If the Bergman kernel By is positive,
one can define the Bergman metric
B — 0?log BEy (2,7%)

g 82185] '
The Bergman metric is well-defined and is nondegenerate if the elements in W separate points
and the first jet of Y. In this case, the Bergman metric is a Kéhler metric.

Remark 4.1. Both the Teichmiiller space and the moduli space are equipped with the Bergman
metrics. However, the Bergman metric on the moduli space is different from the metric induced
from the Bergman metric of the Teichmiiller space. The Bergman metric defined on the mod-
uli space is incomplete due to the fact that the moduli space is quasi-projective and any L2
holomorphic section of the canonical bundle can be extended over. However, the induced one is
complete as we shall see later.

The basic properties of the Kobayashi, the Carathéodory and the Bergman metrics are stated
in the following proposition. Please see [7] for the details.

Proposition 4.1. Let X be a complex space. Then

D - llex < I llwxs

(2) LetY be another complex space and f: X — Y be a holomorphic map. Let p € X and
v e TX. Then | £o(0)llc s < lolox and | £0)lxyis) < I0lxxpr

(3) If X C Y is a connected open subset and z € X is a point. Then with any local
coordinates we have BEy (z) < BEx(z);

(4) If the Bergman kernel is positive, then at each point z € X, a peak section o at z exists.
Such a peak section is unique up to a constant factor ¢ with norm 1. Furthermore, with
any choice of local coordinates, we have BEx(z) = |o(2)|?;

(5) If the Bergman kernel of X is positive, then || - |lc.x < 2| - ||B,x;

(6) If X is a bounded convex domain in C", then || - |lcx = || - ||k x;

(7) Let || be the Euclidean norm and let B, be the open ball with center 0 and radius r in
C™. Then for any holomorphic tangent vector v at 0,

2
lvlle,B.0 = lvlk,B,0 = ;M

where |v| is the Euclidean norm of v.



The three Finsler metrics have been very powerful tools in understanding the hyperbolic
geometry of the moduli spaces, and the mapping class group. It is also known since 70’s that
the Bergman metric on the Teichmiiller space is complete.

The Weil-Petersson metric is the first Kéhler metric defined on the Teichmiiller and the moduli
space. It is defined by using the L? inner product on the tangent space in the following way:
Let p,v € Tx M, be two tangent vectors and let A be the unique Kahler-Einstein metric on X.
Then the Weil-Pertersson metric is

h(uﬂ/)—/xuv dv

where dv = @)\dz A dz is the volume form. Details can be found in [10], [12] and [21].

The curvatures of the Weil-Petersson metric have been well-understood due to the works of
Ahlfors, Royden and Wolpert. Its Ricci and holomorphic sectional curvature are all negative
with negative upper bound, but with no lower bound. Its boundary behavior is understood,
from which it is not hard to see that it is an incomplete metric.

The existence of the Kéhler-Einstein metric was given by the work of Cheng-Yau [2]. Its Ricci
curvature is —1. Namely,

d0logw” = w,,

where n = 3g — 3. They actually proved that a bounded domain in C" admits a complete
Kahler-Einstein metric if and only if it is pseudoconvex.

The McMullen 1/1 metric defined in [13] is a perturbation of the Weil-Petersson metric by
adding a Kéahler form whose potential involves the short geodesic length functions on the Rie-
mann surfaces. For each simple closed curve v in X, let [,(X) be the length of the unique
geodesic in the homotopy class of v with respect to the unique Kéahler-Einstein metric. Then
the McMullen metric is defined as

. — €
Wi/ = Wyp — 10 Z 88Logg
ly(X)<e

where € and ¢ are small positive constants and Log(x) is a smooth function defined as

logz x>2
o) = {77 2]

This metric is Kahler hyperbolic which means it satisfies the following conditions:

(1) (My,w; ;) has finite volume;

(2) The sectional curvature of (Mg, w; ;) is bounded above and below;

(3) The injectivity radius of (7;,w; ;) is bounded below;

(4) On 7, the Kéhler form w,;; can be written as w;,; = da where « is a bounded 1-form.

An immediate consequence of the Kihler hyperbolicity is that the L2-cohomology is trivial
except for the middle dimension.

The asymptotic Poincaré metric can be defined as a complete Kéhler metric on a complex
manifold M which is obtained by removing a divisor Y with only normal crossings from a
compact Kihler manifold (M,w).

Let M be a compact Kéahler manifold of dimension m. Let Y C M be a divisor of normal
crossings and let M = M \ Y. Cover M by coordinate charts Uy, -+ ,U,,---,U, such that
(Up.i.l U--- UUq) NY = ®. We also assume that for each 1 < o < p, there is a constant n, such
that Uy \ 'Y = (A*)" x A™™" and on Uy, Y is given by 2{ .-z = 0. Here A is the disk
of radius % and A* is the punctured disk of radius % Let {n;}1<i<q be the partition of unity
subordinate to the cover {Ui}lgigq- Let w be a Kihler metric on M and let C be a positive
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constant. Then for C' large, the Kahler form

p
- 1
i=1 1 ni

defines a complete metric on M with finite volume since on each U; with 1 < ¢ < p, w), is
bounded from above and below by the local Poincaré metric on U;. We call this metric the
asymptotic Poincaré metric.

The signs of the curvatures of the above metrics are all unknown. We actually only know that
the Kéahler-Einstein metric has constant negative Ricci curvature and that the McMullen metric
has bounded geometry. Also except the asymptotic Poincaré metric, the boundary behaviors
of the other metrics are unknown either before our works. It is interesting that to understand
them we need to introduce new metrics.

Now we define the Ricci metric and the perturbed Ricci metric. The curvature properties and
asymptotics of these two new metrics are understood by us and will be stated in the following
sections. Please also see [10] and [11] for details.

By the works of Ahlfors, Royden and Wolpert we know that the Ricci curvature of the Weil-
Petersson metric has a negative upper bound. Thus we can use the negative Ricci form of the
Weil-Petersson metric as the Kéhler form of a new metric. We call this metric the Ricci metric
and denote it by 7. That is

Wy = 8610gw@}).
Through careful analysis, we now understand that the Ricci metric is a natural canonical com-
plete Kahler metric with many good properties. However, its holomorphic sectional curvature is
only asymptotically negative. To get a metric with good sign on its curvatures, we introduced
the perturbed Ricci metric wy as a combination of the Ricci metric and the Weil-Petersson
metric:

wy =wr +Cuwy,p

where C is a large positive constant. As we shall see later that the perturbed Ricci metric has
desired curvature properties so that we can put it either on the target or on the domain manifold
in Yau’s Schwarz lemma, from which we can compare the above metrics.

5. THE CURVATURE FORMULAS

In this section we describe the harmonic lift of a vector field on the moduli space to the
universal curve due to Royden, Siu [16] and Schumacher [15]. Details can also be found in [10].
We then use this method to derive the curvature formula for the Weil-Petersson metric, the
Ricci metric and the perturbed Ricci metric.

To compute the curvature of a metric on the moduli space, we need to take derivatives of
the metric in the direction of the moduli space. However, it is quite difficult to estimate the
curvature by using a formula obtained in such a way. The central idea is to obtain a formula
where the derivatives are taken in the fiber direction. We can view the deformation of complex
structures on a topological surface as the deformation of the Kahler-Einstein metrics.

Let Mg be the moduli space of Riemann surfaces of genus g where g > 2. Let n = 3g — 3 be
the complex dimension of M,. Let X be the total space and let 7 : X — M, be the projection
map.

Let s1,---, s, be holomorphic local coordinates near a regular point s € M, and assume that
z is a holomorphic local coordinate on the fiber X, = 7 !(s). For holomorphic vector fields

8%1, cee %, there are vector fields vq,--- ,v, on X such that
(1) I*(vl) = 6%1 fori=1,---,n;
(2) Ov; are harmonic T' X -valued (0, 1) forms for i = 1,--- | n.

8



The vector fields vy, - - - , v, are called the harmonic lift of the vectors 8%1’ R %. The existence

of such harmonic vector fields was pointed by Siu. Schumacher in his work gave an explicit
construction of such lift. We now describe it.
Since g > 2, we can assume that each fiber is equipped with the Kahler-Einstein metric

A= @)\(z, s)dz A dz. The Kéhler-Einstein condition gives the following equation:
(5.1) 0,0zlog A = A.
For the rest of this paper we denote {% by 0; and % by 0,. Let

a; = —A"10;0-log A

and let

A; = 0za,.
Then the harmonic horizontal lift of 9; is

v; = 0; + a;0,.

In particular

B; = A0, ®dz € H'(X,, Tx,)
is harmonic. Furthermore, the lift 9; — B; gives the Kodaira-Spencer map TsM, — H*(Xs, Tx, ).
Thus the Weil-Petersson metric on M, is

Xs Xs

where dv = @)\dz A dz is the volume form on the fiber Xj.

Let Rz‘}ki be the curvature tensor of the Weil-Petersson metric. Here we adopt the following
notation for the curvature of a Kéhler metric:
For a Kéhler metric (M, g), the curvature tensor is given by

2
g5 gpqagia 99,57
02,07 0z, 0% '
In this case, the Ricci curvature is given by

_ Kl
Rz =—9" Ry
By using the curvature of the Weil-Petersson metric, we can define the Ricci metric:

_pkip_
Tii = h Rijkl

Rijki =

and the perturbed Ricci metric:
7’\:23 =T, zj + C hz}
where C' is a positive constant.

Before we present the curvature formulas for the above metrics, we need to introduce the
Maass operators and norms on a Riemann surface [21].

Let X be a Riemann surface and let x be its canonical bundle. For any integer p, let S(p)
be the space of smooth sections of (k ® F~1)2. Fix a conformal metric ds? = p2(z)|dz|2. In the
following, we will take ds? to be the Kihler-Einstein metric although the following definitions
work for all metrics.

The Maass operators K, and L, are defined to be the metric derivatives

K,:S(p)— S(p+1)and L,: S(p) — S(p—1) given by
Kplo) = 105 "0)

and

Ly(o) = p77~0(pP o)
9



where o € S(p).

The operators P = K1 Ky and [0 = — L1 Ky will play important roles in the curvature formulas.
Here the operator [J is just the Laplace operator. We also let 7' = (0 + 1)~! to be the Green
operator.

Each element o € S(p) have a well-defined absolute value |o| which is independent of the
choice of local coordinate. We define the C* norm of o:

Let @ be an operator which is a composition of operators K, and L,. Denote by |Q| the number
of factors. For any o € S(p), define

lollo = sup|o|
X

lolle = 1Qallo-
|QI<k
We can also localize the norm on a subset of X. Let Q2 C X be a domain. We can define

and

lollo.o = sup o]
Q

and
lolke =Y 1Qolloq.
lQI<k
We let fz = A;A; and e;; = T(f;;)- These functions will be the building blocks for the
curvature formulas.
The trick of converting derivatives from the moduli directions to the fiber directions is the
following lemma due to Siu and Schumacher:

Lemma 5.1. Let n be a relative (1,1)-form on the total space X. Then

0
881/577_\/va177

The curvature formula of the Weil-Petersson metric was first established by Wolpert by using
a different method [19] and later was generalized by Siu [16] and Schumacher [15] by using the
above lemma:

Theorem 5.1. The curvature of the Weil-Petersson metric is given by

For the proof, please see [10]. From this formula it is rather easy to show that the Ricci and
the holomorphic sectional curvature have explicit negative upper bound.

To establish the curvature formula of the Ricci metric, we need to introduce more operators.
Firstly, the commutator of the operator vy and (0 + 1) will play an important role. Here we
view the vector field vy as a operator acting on functions. We define

§e =[O+ 1, 0.
A direct computation shows that
& = —ALP.
Also we can define the commutator of 7; and &.. Let
Qi = [, &kl-

We have B
Q}J(f) = P(ekZ)P(f) - 2kaDf + A_laszia?f
for any smooth function f.
10



To simplify the notation, we introduce the symmetrization operator of the indices. Let U be
any quantity which depends on indices i, k, «, 7, [, 3. The symmetrization operator o is defined
by taking summation of all orders of the triple (i, k, ). That is

O-l(U(ia kv Oé,j, Za B)) :U(Za k) Oé,;, Za B) + U(Za «, kvja ia B) + U(ka 7:’ O‘)ja iv B) + U(ka «, i?jv i) B)
+ U((X, ia kajv 37 B) + U(O[, k? i?ja Za E)

Similarly, o is the symmetrization operator of j and 8 and o7 is the symmetrization operator
of j, 1 and S.
In [10] the following curvature formulas for the Ricci and perturbed Ricci metric were proved:

Theorem 5.2. Let s1,---, s, be local holomorphic coordinates at s € My. Then at s, we have

R =1 {ovas [ {(@+1) @legule5) + O+ D eeqEsle} ao

(5.3) e {Ul /X Qulei)cas dv}
_ pPApeBpd {01 /Xs £k(e@)eaﬁ dv} {51 /Xs El(epg)evg) dv}

_HPq _
—i-ijh Rz’ak:l

and

P =0 {02 [ {0417 6elens) + O+ 17 e Eatenn)} v}

s

(5.4) e {Ul /x Qulei)eas dv}

= q ogB 3 — — o £ = S
TPIRXT R {Ul /X5 gk(ezq)eaﬁ dU} {01 AS gl(epj)efyé) d’l)}
+ ijhqu'Eki + CRZ}kZ

)

where Rﬁm, Ri}ki? and Pﬁki are the curvature of the Weil-Petersson metric, the Ricci metric

and the perturbed Ricci metric respectively.

Unlike the curvature formula of the Weil-Petersson metric which we can see the sign of the
curvature directly, the above formulas are too complicated and we cannot see the sign. So we
need to study the asymptotic behaviors of these curvatures, and first the metrics themselves.

6. THE ASYMPTOTICS

To compute the asymptotics of these metrics and their curvatures, we first need to find a
canonical way to construct local coordinates near the boundary of the moduli space. We first
describe the Deligne-Mumford compactification of the moduli space and introduce the pinching
coordinate and the plumbing construction which due to Earle and Marden. Please see [12], [21],
[17] and [10] for details.

A point p in a Riemann surface X is a node if there is a neighborhood of p which is isometric
to the germ {(u,v) | wv = 0, |u|,|v] < 1} € C% Let pi1,---,px be the nodes on X. X is
called stable if each connected component of X \ {p1,--- ,pr} has negative Euler characteristic.
Namely, each connected component has a unique complete hyperbolic metric.

Let M, be the moduli space of Riemann surfaces of genus g > 2. The Deligne-Mumford
compactification M, is the union of M, and corresponding stable nodal surfaces [3]. Each

point y € M, \ M,, corresponds to a stable noded surface X,.
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We recall the rs-coordinate on a Riemann surface defined by Wolpert in [21]. There are two
cases: the puncture case and the short geodesic case. For the puncture case, we have a noded
surface X and a node p € X. Let a,b be two punctures which are paired to form p.

Definition 6.1. The local coordinate charts (U,w) near a is called rs-coordinate if u(a) =0, u
maps U to the punctured disc 0 < |u| < ¢ with ¢ > 0 and the restriction to U of the Kdhler-
FEinstein metric on X can be written as WWM The rs-coordinate (V,v) near b is
defined in a similar way.

For the short geodesic case, we have a closed surface X, a closed geodesic v C X with length
| < ¢, where ¢, is the collar constant.

Definition 6.2. The local coordinate chart (U, z) is called rs-coordinate at y if v C U, z maps
U to the annulus c_1|t|% < |z| < c\t\% and the Kdhler-Einstein metric on X can be written as
mlog|z]\2| 7.2
csc o8 )2 dz |2
g [¢]

1
2 (g 1 Tl
Remark 6.1. We put the factor 3 in the above two definitions to normalize such that (5.1) holds.
By Keen'’s collar theorem [5], we have the following lemma:

Lemma 6.1. Let X be a closed surface and let v be a closed geodesic on X such that the length
I of v satisfies | < cx. Then there is a collar  on X with holomorphic coordinate z defined on
Q such that

2
(1) z maps Q to the annulus %6_27 < |z| < ¢ for ¢ >0;
(2) the Kdihler-Einstein metric on X restrict to Q) is given by

1
(6.1) (§u27’_2 csc? 7)|dz)?

L r=|z| and T = ulogr;
2

where u = 5,
™
(3) the geodesic v is given by |z| = e T .

We call such a collar Q a genuine collar.

We notice that the constant ¢ in the above lemma has a lower bound such that the area of
Q is bounded from below. Also, the coordinate z in the above lemma is rs-coordinate. In the
following, we will keep the notation u, r and 7.

Now we describe the local manifold cover of Mg near the boundary. We take the construction
of Wolpert [21]. Let X be a noded surface corresponding to a codimension m boundary point.
Xo,0 have m nodes p1,--- ,pm. Xo = Xoo0 \ {p1,--* ,Pm} is a union of punctured Riemann
surfaces. Fix rs-coordinate charts (U;,n;) and (V;,(;) at p; for ¢ = 1,--- ,m such that all the U;
and V; are mutually disjoint. Now pick an open set Uy C Xy such that the intersection of each
connected component of Xy and Uy is a nonempty relatively compact set and the intersection
UpN(U;UV;) is empty for all i. Now pick Beltrami differentials v, 41, - - - , v, which are supported
in Uy and span the tangent space at X of the deformation space of Xy. For s = (Sp41,-+ ,8n),
let v(s) = Y1, 1 sivi. We assume [s| = (3 |sZ|2)% is small enough such that |v(s)| < 1. The
noded surface Xy s is obtained by solving the Beltrami equation dw = v(s)0w. Since v(s) is
supported in Uy, (U;,n;) and (V;, (;) are still holomorphic coordinates on X ;. Note that they are
no longer rs-coordinates. By the theory of Alhfors and Bers [1] and Wolpert [21] we can assume
that there are constants d,c¢ > 0 such that when |s| < §, 7; and ; are holomorphic coordinates
on Xo s with 0 < |n;] < cand 0 < |(;| < ¢. Now we assume ¢t = (¢, - ,t,,) has small norm. We

do the plumbing construction on X s to obtain X; ;. Remove from X s the discs 0 < |n;| < %
and 0 < |¢;| < % for each i = 1,--- ,m. Now identify = ltl o |ni| < ¢ with % < |G| < ¢ by

the rule 7;¢; = t;. This defines the surface X; . The tuple (t1, -+ ytmy Smi1, -+ ,Sn) are the
12



local pinching coordinates for the manifold cover of M,. We call the coordinates 7; (or ¢;) the
plumbing coordinates on X; s and the collar defined by |%Z| < |ni| < ¢ the plumbing collar.

Remark 6.2. By the estimate of Wolpert [20], [21] on the length of short geodesic, the quantity

R R s
Ui = 57 ™~ log |¢i]

Now we describe the estimates of the asymptotics of these metrics and their curvatures. The
principle is that, when we work on a nearly degenerated surface, the geometry focuses on the
collars. Our curvature formulas depend on the Kéhler-Einstein metrics of the family of Riemann
surfaces near a boundary points. One can obtain approximate K&hler-Einstein metric on these
collars by the graft construction of Wolpert [21] which is done by gluing the hyperbolic metric
on the nodal surface with the model metric described above.

To use the curvature formulas (5.2), (5.3) and (5.4) to estimate the asymptotic behavior, one
also needs to analyze the transition from the plumbing coordinates on the collars to the rs-
coordinates. The harmonic Beltrami differentials were constructed by Masur [12] by using the
plumbing coordinates and it is easier to compute the integration by using rs-coordinates. Such
computation was done in [17] by using the graft metric of Wolpert and the maximum principle.
A clear description can be found in [10]. We have the following theorem:

Theorem 6.1. Let (t,s) be the pinching coordinates on ﬂg near Xo,0 which corresponds to a
codimension m boundary point of My. Then there exist constants M,6 > 0 and 1 > ¢ > 0
such that if |(t,s)| < 8, then the j-th plumbing collar on X4 contains the genuine collar Q.

Furthermore, one can choose rs-coordinate zj on the collar Q. properly such that the holomorphic
quadratic differentials vy, -+ 4, corresponding to the cotangent vectors dty,--- ,ds, have form
W = @i(zj)dzjz on the genuine collar Q% for 1 < j < m where

(1) ¢i(z) = i(qf'(zj) + 80y ifi > m A+ 1
(2) ¢i(z)) = (—;])%(Qj(zj) +B5) if i = j;
(3) ¢i(z) = (- %)%(qf(zj) + 80 if1<i<m andi#j.

Here ﬁg and B are functions of (t,s), qj and q; are functions of (t s,2;) given by

qz z] Zalktst kzk—i—z%k

k<0 k>0
and
)= ajr(t )t R+ gty s)z
k<0 k>0
such that

(1) Theolofle™ < M and 3y g [ofy|c* < M if i # j;
(2) Zk<0 lakle™® < M and Zk>0 vk |c® < M;
(3) 16| = O(Jt;|>~) with ¢ < § if i # j;
( ) 18j] = (1 + O(uo))
where ug = Y 0w + 300 [l
By definition, the metric on the cotangent bundle induced by the Weil-Petersson metric is
given by

Wi = / A20i; dv.
th

We then have the following series of estimates, see [10]. First by using this formula and taking
inverse, we can estimate the Weil-Petersson metric.
13



Theorem 6.2. Let (t,s) be the pinching coordinates. Then

1) it — 2u; ®[t;]2(1 + O(ug)) and hy; = §|tl|2(1+0(u0)) for1<i<m;

U3
O(|tit;]) andhﬁ:O(ltt ‘) if 1 <i,7<m andi# j;
O(1) and hz =0(1) if m+1<i,j <n;

= O(|ti]) cmdhf—O(z;—) ifi<m<jorj<m<i.

2
3
4

<
Il

(1)
(2) Y
(3) h¥
(4) A

Then we use the duality to construct the harmonic Beltrami differentials. We have

Lemma 6.2. On the genuine collar Ql for ¢ small, the coefficient functions A; of the harmonic
Beltrami differentials have the form.:

(1) Az = %sinQTj(pz( ) +b]) ZfZ 7é.77
(2) Aj = j:i sin2 Tj(pj(Zj) + bj)
where
(1) Pl(2)) = Ypey al)p; 28 + Y sy aly 2k if i # j;
(2) pi(2) = >k ajkp;sz + 2kt ajk’zf‘

271'2

In the above expressions, p; = e 5 and the coefficients satisfy the following conditions:

(1) D p< s \afk\f’“ = O(UJ'_Q) and ) psq ’agk’ck = O(“j_g) ifi>m+1;
(2) Dk |azk|c = O(u;2)0(ﬁ) and )y |a{k|ck = O(u]_2)0(t—l) if i <m andi# j;
(3) k<t |ajrle™ = O(%) and ) >y |ajlch = O(%),

(4) 1] = Oluy) if i > m +1;

() 1= 0w)0(i) i <m and i

(6) b

6 —mj( + O(uo)).

To use the curvature formulas to estimate the Ricci metric and the perturbed Ricci metric,
one needs to find accurate estimate of the operator 7' = ((J + 1)~!. More precisely, one needs
to estimate the functions ez = T(f;5). To avoid writing down the Green function of T', we

construct approximate solutions and localize on the collars in [10]. Pick a positive constant
¢1 < ¢ and define the cut-off function n € C*°(R, [0, 1]) by

1 z <logcy
(6.2) n(z) =0 x >logc
0<n(z)<l loge <z <loge.

It is clear that the derivatives of 1 are bounded by constants which only depend on ¢ and ¢;.
Let e;z(2) be the function on X defined in the following way where z is taken to be z; on the

collar QZC

(1) ifi <m and j > m+ 1, then

% sin sz b z € szl

) (3sin’nb; bl)n(logri) zeQandep <1 <c

¢j?) (% sin? 7;b;b% n(log p; —logr;) =z € Qb and ¢ lp; <1 < eflpi
0 z€ X\ QL

14



(2) ifi,7 <m and i # j, then

% sin? Tiabé z € Qil

(3 sin? Tiab§)n(log i) zeNandep <7 <c

(% sin? Tiabé)n(log pi —logr;) ze€Qland clp; <1 < cflpi
é;%(z) = { 1gin? ijﬁ)j z € ch

sin? Tiggbj)n(log ;) zeQland e <rj<c

~—~ N

N[ D=

sin? Tib{bj)n(logpj —logrj) z€ ol and‘ C_lpj <rj<elp
z€ X\ (U

[es}

(3) if i < m, then

3 sin? 7;1b; | zeQ

— (% sin? 7;|b;|*)n(log ;) ze€Q ande; <1y <c

¢il?) (4 sin? 7;|bs|2)n(log pi — logr;) 2z € QL and ¢ 1p; <1 < ¢ 'p;
0 z€ X\

Also, let ]T; = 0O+ 1)%. It is clear that the supports of these approximation functions are
contained in the corresponding collars. We have the following estimates:

Lemma 6.3. Let é\i be the functions constructed above. Then
(1) ez =e; +O(| .
3
(2) eﬁ—e +O(‘;t |) ifi,j <m andi#j;
(3) e = e +O(|t|) ifi <m andj>m+1;
(4) H%Ho— o) ifi,j =m+1.

Now we use the approximation functions €z in the formulas (5.2), (5.3) and (5.4). The
following theorems were proved in [10] and [11]. We first have the asymptotic estimate of the
Ricci metric:

Theorem 6.3. Let (t

(1) 7; = % L (14 O(up)) and 7 = 4° |t | (14 O(uo)) if i <my
2
J

) if i <m;

@ K\J
<o

,s) be the pinching coordinates. Then we have

[t

2 s
(2) ;=0 |t1t (u1+u])> and 7V = (|titj|) ifi,j <m andi#j;
(3) TG = O(ﬁ—?) and T = O(lt;]) if i <m and j > m+1;
(4) 75 = O if i > m+ 1.

By the asymptotics of the Ricci metric in the above theorem, we have
Corollary 6.1. There is a constant C > 0 such that
C'_lwp <wr <w,.
Next we estimate the holomorphic sectional curvature of the Ricci metric:

Theorem 6.4. Let Xy € M\ M, be a codimension m point and let (t1,- -+ ,tm, Smt1,+ ,Sn) be
the pinching coordinates at Xg where t1,--- ,t,, correspond to the degeneration directions. Then
the holomorphic sectional curvature is negative in the degeneration directions and is bounded in
the non-degeneration directions. Precisely, there is a 6 > 0 such that if |(t,s)| < d, then

~ 3u4
(6.3) Rmzw( + O(up)) >0
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if i <m and
(6.4) Rz-=0(1)

if e >m+ 1.
Furthermore, on Mg, the holomorphic sectional curvature, the bisectional curvature and the
Ricci curvature of the Ricct metric are bounded from above and below.

This theorem was proved in [10] by using the formula (5.3) and estimating error terms.
However, the holomorphic sectional curvature of the Ricci metric is not always negative. We
need to introduce and study the perturbed Ricci metric. We have

Theorem 6.5. For suitable choice of positive constant C, the perturbed Ricci metric 7~'i3 =
77 + Chi; is complete and comparable with the asymptotic Poincaré metric. Its bisectional
curvature is bounded. Furthermore, its holomorphic sectional curvature and Ricci curvature are
bounded from above and below by negative constants.

Remark 6.3. The perturbed Ricci metric is the first complete Kéhler metric on the moduli
space with bounded curvature and negatively pinched holomorphic sectional curvature and Ricci
curvature.

By using the minimal surface theory and Bers’ embedding theorem, we have also proved the
following theorem in [11]:

Theorem 6.6. The moduli space equipped with either the Ricci metric or the perturbed Ricci
metric has finite volume. The Teichmiiller space equipped with either of these metrics has
bounded geometry.

7. THE EQUIVALENCE OF THE COMPLETE METRICS

In this section we describe our arguments that all of the complete metrics on the Teichmiiller
space and moduli space discussed above are equivalent. With the good understanding of the
Ricci and the perturbed Ricci metrics, the results of this section are quite easy consequences of
Yau’s Schwarz lemma and also the basic definitions of these metrics. We first give the definition
of equivalence of metrics:

Definition 7.1. Two Kdahler metrics g1 and go on a manifold X are equivalent or two norms
|| -|l1 and || - ||2 on the tangent bundle of X are equivalent if there is a constant C > 0 such that

Clg1<g2<Cqn
or
CH i< - ll2 <O - .
We denote this by g1 ~ g2 or || - |l1 ~ || - ||2-

The main result of this section we want to discuss is the following theorem proved in [10] and
[11]:

Theorem 7.1. On the moduli space Mg (g > 2), the Teichmiller metric |||, the Carathéodory
metric ||-||c, the Kobayashi metric |- ||k, the Kihler-Einstein metric w,.,, , the induced Bergman
metric w, , the McMullen metric w,,, the asymptotic Poincaré metric w, the Ricci metric w,
and the perturbed Ricci metric wz are equivalent. Namely

Wrgp ~WF Y Wr ~YWp YW ~ Wy,

and
-l =1l ~ Ao~ A D
As corollary we proved the following conjecture of Yau made in the early 80s [24], [14]:
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Theorem 7.2. The Kdhler-Finstein metric is equivalent to the Teichmiiller metric on the moduli
space: || - |lkp ~ [ - [I7.

Another corollary was also conjectured by Yau as one of his 120 famous problems [24], [14]:

Theorem 7.3. The Kahler-Finstein metric is equivalent to the Bergman metric on the Te-
ichmiiller space: w,., ~ w,.

Now we briefly describe the idea of proving the comparison theorem. To compare two com-
plete metrics on a noncompact manifold, we need to write down their asymptotic behavior and
compare near infinity. However, if one can not find the asymptotics of these metrics, the only
tool we have is the following Yau’s Schwarz lemma [22]:

Theorem 7.4. Let f : (M™,g) — (N", h) be a holomorphic map between Kdhler manifolds
where M is complete and Ric(g) > —cg with ¢ > 0.

(1) If the holomorphic sectional curvature of N is bounded above by a negative constant,
then f*h < ¢g for some constant c.

(2) If m = n and the Ricci curvature of N is bounded above by a megative constant, then
[fwy < cwy for some constant c.

We briefly describe the proof of the comparison theorem by using Yau’s Schwarz lemma and
the curvature computations and estimates.

Sketch of proof. To use this result, we take M = N = M, and let f be the identity map.
We know the perturbed Ricci metric is obtained by adding a positive Kéhler metric to the Ricci
metric. Thus it is bounded from below by the Ricci metric.

Consider the identity map

id: (Mg,wr) = (Mg,wyp)-
Yau’s Schwarz Lemma implies w, , < Cow;. So
wr <wz =wr + Cwy,, < (CCh+ 1w

Thus w; ~ wx.
To control the Kahler-Einstein metric, we consider
id (MWWKE) - (Mngf')
and
id: (Mg, wz) = (Mg,wyp)-
Yau’s Schwarz Lemma implies
wr < Cowyp
and
wr o < Cows.
The equivalence follows from linear algebra.
Thus by Corollary 6.1 we have

Wgp ™~ Wi~ Wr ~ Wy

By using similar method we have w; < Cw,,. To show the other side of the inequality, we
have to analyze the asymptotic behavior of the geodesic length functions. We showed in [10]
that

Wr ~W,,.
Thus by the work of McMullen [13] we have
Wr ~ Wy ~ |- [l

The work of Royden showed that the Teichmiiller metric coincides with the Kobayashi metric.
Thus we need to show that the Carathéodory metric and the Bergman metric are comparable
17



with the Kobayashi metric. This was done in [11] by using Bers’ embedding theorem. The idea
is as follows:

By the Bers’ embedding theorem, for each point p € 7, there is a map f, : 7, — C" such
that fy(p) = 0 and

By C £,(T;) C By
where B, is the open ball in C" centered at 0 with radius r. Since both Carathéodory metric
and Kobayashi metric have restriction property and can be computed explicitly on balls, we can
use these metrics defined on By and Bg to pinch these metrics on the Teichmiiller space. We
can also use this method to estimate peak sections of the Teichmiiller space at the point p. A
careful analysis shows
-l ~ - e ~ wa-

The argument is quite easy. Please see [11] for details.

8. BOUNDED GEOMETRY OF THE KAHLER-EINSTEIN METRIC

The comparison theorem gives us some control on the Kéhler-Einstein Metric. Especially
we know that it has Poincaré growth near the boundary of the moduli space and is equivalent
to the Ricci metric which has bounded geometry. In this section we sketch our proof that the
Kaéhler-Einstein metric also has bounded geometry. Precisely we have

Theorem 8.1. The curvature of the Kdahler-Finstein metric and all of its covariant derivatives
are uniformly bounded on the Teichmiiller spaces, and its injectivity radius has lower bound.

Now we briefly describe the proof. Please see [11] for details.
Sketch of proof. We follow Yau’s argument in [23]. The first step is to perturb the Ricci
metric using Kahler-Ricci flow

9(0) =7
to avoid complicated computations of the covariant derivatives of the curvature of the Ricci
metric.
For t > 0 small, let h = g(t) and let g be the Kdhler-Einstein metric. We have
(1) hisequivalent to the initial metric 7 and thus is equivalent to the Kéhler-Einstein metric.
(2) The curvature and its covariant derivatives of h are bounded.

99,7
{ o = — (B3 + 9;5)

Then we consider the Monge-Amperé equation

logdet(h;; +u;;) — logdet(h;z) =u+ F

where 00u = wy — wy, and IOF = Ric(h) + wp,.

The curvature of Pz’}ki of the Kahler-Einstein metric is given by

o — P _pPq _ [N T/ P
P = R +u ;W R0+ umr — ™ ugru s

The comparison theorem implies 90u has C°-bound and the strong bounded geometry of h

implies OOF has C*-bound for k > 0. Also, the equivalence of h and g implies u+ F' is bounded.
So we need the C*-bound of 8du for k > 1. Let

— Gkl pa,
S =9"9" g M ugru 5,
and
—gi gkl gpagmn (o e -
V =g"9"9"g (u;zqknu;jplm+u;znkpu;jmlq>

where the covariant derivatives of u were taken with respect to the metric h.
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Yau’s C? estimate in [23] implies S is bounded. Let f = (S+ )V where & is a large constant.
The inequality
A'f > Cf%+ (lower order terms )
implies f is bounded and thus V is bounded. So the curvature of the Kéhler-Einstein metric
are bounded. Same method can be used to derive boundedness of higher derivatives of the
curvature.

0

Actually we have also proved the all of these complete Kahler metrics have bounded geometry,
which should be useful in understanding the geometry of the moduli and the Teichmiiller spaces.

9. APPLICATION TO ALGEBRAIC GEOMETRY

The existence of the Kéhler-Einstein metric is closely related to the stability of the tangent
and cotangent bundle. In this section we review our results that the logarithmic extension of
the cotangent bundle of the moduli space is stable in the sense of Mumford. We first recall the
definition. Please see [6] for details.

Definition 9.1. Let E be a holomorphic vector bundle over a complex manifold X and let ® be
a Kdhler class of X. The (®-)degree of E is given by

deg(F) = / c1(B)e"!
X
where n is the dimension of X. The slope of E is given by the quotient
deg(E)
W(E) = — ==
rank(E)
The bundle E is Mumford (®-)stable if for any proper coherent subsheaf F C E, we have

u(F) < (E).
Now we describe the logarithmic cotangent bundle. Let U be any local chart of M, near the
boundary with pinching coordinates (t1,- -+ ,tm, Sm+1,- -+ ,Sn) such that (¢1,--- ) represent

the degeneration directions. Let

’ ds; ©1>m+ 1.

The logarithmic cotangent bundle E is the extension of 7% M, to M such that on U, ey, , e,
is a local holomorphic frame of E. One can write down the transition functions and check that
there is a unique bundle over M, satisfing the above condition.

To prove the stability of E, we need to specify a Kahler class. It is natural to use the
polarization of E. The main theorem of this section is the following:

Theorem 9.1. The first Chern class c¢1(E) is positive and E is stable with respect to ¢1(E).

We briefly describe here the proof of this theorem. Please see [11] for details.

Sketch of the proof. Since we only deal with the first Chern class, we can assume the
coherent subsheaf F is actually a subbundle F.

Since the Kéhler-Einstein metric induces a singular metric gy . on the logarithmic extension
bundle F, our main job is to show that the degree and slope of E and any proper subbundle F
defined by the singular metric are finite and are equal to the genuine ones. This depends on our
estimates of the Kéahler-Einstein metric which are used to show the convergence of the integrals
defining the degrees.

More precisely we need to show the following:
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(1) As a current, w, , is closed and represent the first Chern class of E, that is
[wKE] =a (F)
(2) The singular metric gy, on E induced by the Kéhler-Einstein metric defines the degree

of B
deg(E):/ wr
My

(3) The degree of any proper holomorphic sub-bundle F’ of E can be defined by using g7 . |r,

deg(F) = /M —ddlogdet (g7 |F) A wzgl.
g

These three steps were proved in [11] by using the Poincaré growth property of the Kéhler-
Einstein metric together with a special cut-off function. This shows that the bundle E is semi-
stable.

To get the strict stability, we proceeded by contradiction. If F is not stable, then F, thus
E |m,, split holomorphically. This implies a finite smooth cover of the moduli space splits
which implies a finite index subgroup of the mapping class group splits as a direct product of
two subgroups. This is impossible by a topological fact. Again, the detailed proof can be found
in [11].

O

10. FINAL REMARKS

Although significant progresses have been made in understanding the geometry of the Te-
ichmiiller and the moduli spaces, there are still many problems remain to be solved, such as the
goodness of these complete Kihler metrics, the computation of their L?-cohomology groups, the
convergence of the Ricci flow starting from the Ricci metric to the Kahler-Einstein metric, the
representations of the mapping class group on the middle dimensional L2-cohomology of these
metrics, and the index theory associated to these complete Kéhler metrics. Also the perturbed
Ricci metric is the first complete Kahler metric on the moduli spaces with bounded negative Ricci
and holomorphic sectional curvature and bounded geometry, we believe this metric must have
more interesting applications. Another question is which of these metrics are actually identical.
We hope to report on the progresses of the study of these problems on a later occasion.
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